# Molecular Biology And Genetic Engineering

Yeah, reviewing a book Molecular Biology And Genetic Engineering could go to your near connections listings. This is just one of the solutions for you to be successful. As understood, achievement does not suggest that you have fantastic points.

Comprehending as well as concurrence even more than supplementary will find the money for each success. adjacent to, the broadcast as skillfully as sharpness of this Molecular Biology And Genetic Engineering can be taken as skillfully as picked to act.



Selected Papers in Molecular Biology. Elsevier

This volume provides a comprehensive description of the basic tenets of molecular biology, from mechanisms to its elaborate role in gene regulation. The initial sections cover the history of genetics and molecular biology. The book then goes on to highlight the significance of molecular approaches for all biological processes in both simple and complex cells. The volume incorporates the most recent research from this ever-evolving field. The authors have described experimental approaches wherever necessary to present evidence that has led to the development of important concepts and explanations of the theory and practice of significant advances in molecular biology.

Concepts for Inquiry Academic Press

Every day it seems the media focus on yet another new development in biology-gene therapy, the human genome project, the creation of new varieties of animals and plants through genetic engineering. These possibilities have all emanated from molecular biology. A History of Molecular Biology is a complete but compact account for a general readership of the history of this revolution. Michel Morange, himself a molecular biologist, takes us from the turn-of-the-century convergence of molecular biology's two progenitors, genetics and biochemistry, to the perfection of gene splicing and cloning techniques in the 1980s. Drawing on the important work of American, English, and

the major discoveries -- the double helix, messenger RNA, oncogenes, DNA polymerase--but also explains how and why these breakthroughs took place. The book is enlivened by minibiographies of the founders of molecular biology: Delbrück, Watson and Crick, Monod and disease is explored from the standpoint of understanding its basic Jacob, Nirenberg. This ambitious history covers the story of the transformation of biology over the last one hundred years; the transformation of disciplines: biochemistry, genetics, embryology, and evolutionary biology; and, finally, the emergence of the biotechnology industry. An important contribution to the history of science, A History of Molecular Biology will also be valued by general readers for its clear molecular biology today. Molecular biologists themselves will find Morange's historical perspective critical to an understanding of what is at stake in current biological research.

## Micropropagation, Genetic Engineering, and Molecular Biology of Populus CRC Press

This introductory college-level molecular biology textbook builds upon concepts from first-year high school biology and chemistry courses to elucidate essential concepts in molecular biology, biochemistry, cell biology, and genetics. It is appropriate for college courses and high school courses taught at the college level. Over 170 to clarify concepts in a streamlined manner, not to be an encyclopedic collection of facts. Connections are explicitly made to prior knowledge and key high school chemistry concepts are reviewed. The biotechnology driving basic science research and translational medicine is explained so that this textbook can serve as heterochromatin, histone modifications, chromatin packaging,

French historians of science, Morange describes a companion to a student beginning molecular biology research. Highlighted techniques include PCR, Sanger DNA sequencing, nextgeneration DNA sequencing, genetic engineering of plasmids, iGEM gene assembly, principles of gene expression, gene transfer into bacteria and mammalian cells, strategies in drug design, human gene therapy, CRISPR and other genome editing techniques. Human science in order to develop effective treatments.CHAPTER 1: INTRODUCTION TO BIOCHEMISTRY AND CELL BIOLOGY: Organic Molecules; The Thermodynamics of Life; Organic Molecules and Thermodynamics in the Cell; Biotechnology and Alternative Energy.CHAPTER 2: PROTEIN STRUCTURE AND FUNCTION; Protein Biochemistry; Enzyme; Use and Manipulation of Proteins in Biotechnology. CHAPTER 3: DNA REPLICATION, **REPAIR AND GENETIC ENGINEERING; Chromosomes; DNA** Biochemistry; DNA Replication; DNA Repair Enzymes; Genetic Engineering.CHAPTER 4: THE REGULATION OF GENE EXPRESSION: The Regulation of Transcription; The Organization of a Gene; Posttranscriptional Regulation of mRNA Levels in Eukaryotes; The Programming of Transcriptional Patterns During Development; Measuring Levels of Gene Expression.CHAPTER 5: GENOME EVOLUTION: Genome Evolution; Cancer; Mutation and Selection in the Immune System. CHAPTER 6: EMERGING MOLECULAR BIOLOGY, BIOTECHNOLOGY AND MEDICINE: Precision Medicine: Analyzing Individual Genomes and Transcriptomes; Emerging Methods for Disease Treatment.SELECT TOPICS INCLUDE: Mechanisms of dominant (gain of function, dominant negative, haploinsufficiency) and recessive phenotypes, protein misfolding and aggregation disorders, prion disease, FRET, PCR, cohesin in mitosis, Sanger DNA sequencing, next generation color figures clearly illustrate key concepts. The goal of this work is DNA sequencing, the Human Genome Project, DNA fingerprinting, mechanisms of mutation and DNA repair, NHEJ, homologous recombination, restriction enzymes, cloning strategies, strategies for introducing genes into prokaryotes and eukaryotes, gene parts, mRNA stability, formation and function of euchromatin and

topologically associated domains, organismal cloning, stem cells, DNA methylation patterns, genomic imprinting, X chromosome inactivation, RNAi, siRNAs, microRNAs, lncRNAs, microarrays, patterns of conserved synteny in genomes, natural selection of phenotypes and genome evolution, gene duplication, hallmarks of cancer, Knudson's 2-Hit Hypothesis, tumor suppressor genes, oncogenes, cancer mutations in the context of signaling pathways, cell cycle checkpoints, telomeres and telomerase, the role of p53, mitotic errors in chromosome segregation in cancer, causes of genomic instability in cancer, gene rearrangement and selection in antibody-producing cells, precision medicine, genome or exome sequencing, recent advances in gene therapy, genome editing, zinc finger endonucleases, TALENs, CRISPR/Cas9, strategies for drug design, role of molecular dynamics modeling in drug design. This textbook was created to replace direct lecturing, to support teaching through inquiry and experimentation. Supporting materials are available on the author's website:

HackettMolecularBiology.blogspot.com

A Guide to Mathematics in the Laboratory Scientific e-Resources The book is primarily designed for B.Sc. and M.Sc. students of Biotechnology, Botany, Plant Biotechnology, Plant Molecular Biology, Molecular Biology and Genetic Engineering as well as for those pursuing B.Tech. and M.Tech. in Biotechnology. It will also be of immense value to the research scholars and academics in the field. Though ample literature is available on this subject, still a textbook combining biotechnology and genetic engineering has always been in demand by the readers. Hence, with this objective, the authors have presented this compact yet comprehensive text to the students and the teaching fraternity, providing clear and concise understanding of the principles o biotechnology and genetic engineering. It has a special focus on tissue culture, protoplasm isolation and fusion, and transgenic plants in addition to the basic concepts and techniques of the subject. It gives sound knowledge of gene structure, manipulation and plant transformation vectors. KEY FEATURES • Combines knowledge of Plant Biotechnology and Genetic Engineering in a single volume. Text interspersed with illustrative examples. • Graded questions and pedagogy, Multiple choice questions, Fill in the blanks, True-false, Short answer questions, Long answer questions and discussion problems in each chapter. • Clear, self-explanatory, and labelled diagrams. • Solutions to all MCQs in the respective chapters.

### Biotechnology Springer Nature

This book covers the concept and advances in cell biology with an emphasis on molecular paradigm. It introduces better understanding of molecular concepts and their integral role in structure and function of cell as a basic unit of life and also their integrative role of overall organization of organs. Cell

biology is a fascinating branch of biological sciences, providing development of tools for the production of books and on the

answers to hitherto unanswered questions. It is the mother science to areas such as molecular biology, molecular genetics, biotechnology, recombinant DNA technology etc. During the last few decades, the science of cell biology has grown at an unprecedented pace with the consequence that voluminous information has accumulated on the subject. Cell and molecular biology is an every dynamic area of life sciences where the core activity of all biological developments are studied in depth. This comprehensive book provides a concise coverage of every topic in cell and molecular biology from the fundamental aspects to the latest developments in a simple and lively manner. The present book titled Cell and Molecular Biology deals with both gross and molecular structure of cell in all its structural and functional manifestations. There are also chapters on genetic Nucleosomes in Eukaryotes Techniques Leading to engineering and immunology as the understanding of these are very vital for comprehending the expressions of cell machinery.

Molecular Biology CRC Press

A study of recent developments in molecular biology and biotechnology, including enzyme technology, genetics and various applications, for example in fermentation technology protein technology, genetic engineering and product recovery.

Molecular genetics : MG - 1 genetic engineering CRC Press This essential should serve as an introduction for a contemporary public discussion on genetic engineering. Genetic engineering affects us all in many areas and we must Protein Synthesis: 2. RNA Processing (RNA Splicing, dare to think more colorful and further. In fact, the complete genetic material of viruses and bacteria can already be chemically produced and "brought to life". With genetic surgery, medicine is at a crossroads: do we want to treat hereditary diseases or "repair" them genetically? And the analysis of thousands of human genetic material reveals information that is related to complex diseases, but also to characteristics such as intelligence. How should we use this knowledge? The question is hardly whether we want genetic engineering, but rather how we use it. This Springer essential is a translation of the original German 1st edition essentials, Gentechnik by Röbbe Wünschiers, published by The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the

related technologies to support the authors.

Selected Papers in Molecular Biology. National

PART I Molecular Biology 1. Molecular Biology and Genetic Engineering Definition, History and Scope 2. Chemistry of the Cell: 1. Micromolecules (Sugars, Fatty Acids, Amino Acids, Nucleotides and Lipids) Sugars (Carbohydrates) 3. Chemistry of the Cell . 2. Macromolecules (Nucleic Acids; Proteins and Polysaccharides) Covalent and Weak Non-covalent Bonds 4. Chemistry of the Gene: Synthesis, Modification and Repair of DNA DNA Replication: General Features 5. Organisation of Genetic Material 1. Packaging of DNA as Nucleosome Discovery 6. Organization of Genetic Material 2. Repetitive and Unique DNA Sequences 7. Organization of Genetic Material: 3. Split Genes, Overlapping Genes, Pseudogenes and Cryptic Genes Split Genes or .Interrupted Genes 8. Multigene Families in Eukaryotes 9. Organization of Mitochondrial and Chloroplast Genomes 10. The Genetic Code 11. Protein Synthesis Apparatus Ribosome, Transfer RNA and Aminoacyl-tRNA Synthetases Ribosome 12. Expression of Gene . Protein Synthesis 1. Transcription in Prokaryotes and Eukaryotes 13. Expression of Gene: RNA Editing and Ribozymes) Polyadenylation of mRNA in Prokaryotes Addition of Cap (m7G) and Tail (Poly A) for mRNA in Eukaryotes 14. Expression of Gene: Protein Synthesis: 3. Synthesis and Transport of Proteins (Prokaryotes and Eukaryotes) Formation of Aminoacyl tRNA 15. Regulation of Gene Expression: 1. Operon Circuits in Bacteria and Other Prokaryotes 16. Regulation of Gene Expression . 2. Circuits for Lytic Cycle and Lysogeny in Bacteriophages 17. Regulation of Gene Expression 3. A Variety of Mechanisms in Eukaryotes (Including Cell Receptors and Cell Signalling) PART II Genetic Engineering 18. Recombinant DNA and Gene Cloning 1. Cloning and Expression Vectors 19. Recombinant DNA and Gene Cloning 2. Chimeric DNA, Molecular Probes and Gene Libraries 20. Polymerase Chain Reaction (PCR) and Gene Amplification 21. Isolation, Sequencing and Synthesis of Genes 22. Proteins: Separation, Purification

and Identification 23. Immunotechnology 1. B-Cells, Antibodies, Interferons and Vaccines 24. Immunotechnology 2. T-Cell Receptors and MHC Restriction 25. Immunotechnology 3. Hybridoma and Monoclonal Antibodies (mAbs) Hybridoma Technology and the Production of Monoclonal Antibodies 26. Transfection Methods and Transgenic Animals 27. Animal and Human Genomics: Molecular Maps and Genome Sequences Molecular Markers 28. Biotechnology in Medicine: I.Vaccines, Diagnostics and Forensics Animal and Human Health Care 29. Biotechnology in Medicine 2. Gene Therapy Human Diseases Targeted for Gene Therapy Vectors and Other colorful illustrations and concise applications. In Delivery Systems for Gene Therapy 30. Biotechnology in addition, the book integrates recent, relevant Medicine: 3. Pharmacogenetics / Pharmacogenomics and primary research articles for each chapter, which

Personalized Medicine Phannacogenetics and Personalized 31. Plant Cell and Tissue Culture' Production and Uses of Haploids 32. Gene Transfer Methods in Plants 33. Transgenic Plants . Genetically Modified (GM) Crops and Floricultural Plants 34. Plant Genomics: 35. Genetically Engineered Microbes (GEMs) and Microbial Genomics References PHI Learning Pvt. Ltd.

Experiments in Molecular Biology provides a thorough introduction to recombinant DNA methods used in molecular biology and nucleic acid biochemistry. This unique laboratory manual is particularly appropriate for courses in molecular cloning, molecular genetics techniques, molecular biology techniques, recombinant DNA techniques, bacterial genetics techniques, and genetic engineering. Included is an especially helpful section to aid new instructors in avoiding potential pitfalls of specific experiments. Key Features \* Contains student-tested, easy-to-follow protocols \* Presents background information that reinforces principles behind the methods presented \* Includes questions at the end of laboratory exercises \* Provides both detailed descriptions of experimental procedures and a theoretical support section \* Sequentially links experiments to provide a "project" approach to studying molecular biochemistry \* Includes student-tested, easy-to-follow protocols \* Background information reinforces principles behind the methods presented \* Includes questions at the end of laboratory exercises \* Advises new instructors on potential pitfalls of specific experiments \* Provides both detailed descriptions of experimental procedures and a theoretical support section \* Sequentially links experiments to provide a "project" approach to studying

Calculations for Molecular Biology and Biotechnology transformation and molecular hybridization. While Scholium International

Biotechnology, Second Edition approaches modern biotechnology from a molecular basis, which has grown out of increasing biochemical understanding of genetics and physiology. Using straightforward, less-technical jargon, Clark and Pazdernik introduce each chapter with basic concepts that develop into more specific and detailed applications. This up-todate text covers a wide realm of topics including forensics, bioethics, and nanobiotechnology using are presented on an accompanying website. The articles demonstrate key concepts or applications of

the concepts presented in the chapter, which allows the reader to see how the foundational knowledge in this textbook bridges into primary research. This book helps readers understand what molecular biotechnology actually is as a scientific discipline, how research in this area is conducted, and how this technology may impact the future. Up-to-date text focuses on modern biotechnology with a molecular foundation Includes clear, color illustrations of key topics and concept Features clearly written without overly technical jargon or complicated examples Provides a comprehensive supplements package with an easy-to-use study guide, full primary research articles that demonstrate how research is conducted, and instructor-only resources Introduction to Molecular Biology and Genetic Engineering/Oliver Brandenberg (et Tal). Molecular **Biology and Genetic Engineering** 

This systematically designed laboratory manual elucidates a number of techniques which help the students carry out various experiments in the field of genetic engineering. The book explains the methods for the isolation of DNA and RNA as well as electrophoresis techniques for DNA, RNA and proteins. It discusses DNA manipulation by restriction digestion and construction of recombinant DNA by ligation. Besides, the book focuses on various methodologies for DNA

discussing all these techniques, the book puts emphasis on important techniques such as DNA isolation from Gram positive bacteria including Bacillus sp., the slotlysis electrophoresis technique which is useful in DNA profile analysis of both Gram negative and positive bacteria, plasmid transduction in Bacillus sp., and the conjugal transfer of plasmid DNA in cyanobacteria, Bacillus and Agrobacterium tumefaciens. This book is intended for the undergraduate and postgraduate students of biotechnology for their laboratory courses in genetic engineering. Besides, it will be useful for the students specializing in genetic engineering, molecular biology and molecular microbiology. KEY FEATURES : Includes about 60 different experiments. Contains several figures to reinforce the understanding of the techniques discussed. Gives useful information about preparation of stock solutions, DNA/protein conversions, restriction enzymes and their recognition sequences, and so on in Appendices. Nucleic Acids Synthesis National Academies Press "The book . . . is, in fact, a short text on the many practical problems . . . associated with translating the explosion in basic biotechnological research into the next Green Revolution," explains Economic Botany. The book is "a concise and accurate narrative, that also manages to be interesting and personal . . . a splendid little book." Biotechnology states, "Because of the clarity with which it is written, this thin volume makes a major contribution to improving public understanding of genetic engineering's potential for enlarging the world's food supply . . . and can be profitably read by practically anyone interested in application of molecular biology to improvement of productivity in agriculture."

The Thread of Life Rastogi Publications Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease, insect, and pollution); and 5) biotechnological applications (wood properties, flowering, phytoremediation, breeding, commercialization, economics, and bioethics).

New Directions for Biosciences Research in Agriculture Academic Press

Describes, in a delightfully accessible way, the fascinating world of the molecular biology of the gene.

Calculations for Molecular Biology and Biotechnology IRL Press

1. Cell Theory and The Cell 2. Techniques for Cell Study 3. Chemistry of the Cell 4. Chemistry of the Cell 5. Enzymes and Energy Transfers during Metabolism 6. Cell Wall and Extracellular Matrix (ECM) 7. Cyto'skeleton: Microtubules, Actin Filaments and Intermediate Filaments 8.Cell Membrane (Including Plasma Membrane) 9. Cell Organelles 10. Cell Organelles 11. Cell Organelles 12. The Cell Nucleus 13. Energy Conversions Photosynthesis and Respiration 14. Membrane Function 15. Membrane Function 16. Membrane Function 17. Cell Division (Mitosis and Meiosis) 18. The Cell Division Cycle Molecular Basis 19. Germ Cells, Fertilization, Parthenogenesis and Apomixis 20. Basic Concepts in Genetics 21. Maternal Effects and Cytoplasmic Inheritance 22. Linkage and Crossing Over in Diploid Organisms 23. Tetrad Analysis, Mitotic Recombination and Gene Conversion comprehensive guide to calculations for a wide in Haploid Organisms (Fungi and Single Celled Algae) 24. Sexuality and Recombination in Bacteria and Viruses 25. Molecular Mechanism of Genetic Recombination 26. Recombination and Resolution of Gene Structure 27. Plasmids, IS Elements, Transposons and Retroelements 28. Structural Changes In Chromosomes 29. Numerical Changes In Chromosomes 30. Mutations 31. Mutations 32. Chemistry of the Gene: Synthesis, Modification and Repair of DNA 33. Organisation of Genetic Material 34. Organization of Genetic Material 35. Organization of Genetic Material 36. The Genetic Code 37. Transfer RNA and Aminoacyl-tRNA Synthetases 38. Expression of Gene: Protein Synthesis 39. Expression of Gene: Protein Synthesis 40. Expression of Gene: Protein Synthesis 41. Regulation of Gene Expression 42. Regulation of Gene Expression 43. Regulation of Gene Expression 44. Genetic Engineering and Biotechnology 45. Genetic Engineering and Biotechnology 46. Genetic Engineering and Biotechnology 47. Genetic Engineering and Biotechnology 48. Genetic Engineering and Biotechnology 49. Multigene Families in Eukaryotes 50. Specification of Cell Fate and Cell grasp of basic principles is vital in any introduction Commitment 51. Developmental Genetics 52. Immune System to genetic engineering. Therefore, as well as being and Vaccines 53. Genetics of Cancer: Proto-Oncogenes, Oncogenes and Tumour Suppressor Genes 54. Cell Death: Apoptosis 55. Pluripotent Stem Cells and Animal Cloning (Including Human Cloning) References Author Index Subject Index

Molecular Biology National Academies Press Molecular Biology and Genetic EngineeringRastogi

## Publications

Cell and Molecular Biology Cambridge University Press

Calculations in Molecular Biology and Biotechnology: boxes, which highlight important aspects of topics A Guide to Mathematics in the Laboratory is the first comprehensive guide devoted exclusively to calculations encountered in the genetic engineering successful design and interpretation of basic research, is used daily in laboratory work. This guide, written for students, technicians, and scientists, provides example calculations for the most frequently confronted problems encountered in gene discovery and analysis. The text and sample calculations are written in an easy-to-follow format. It is the perfect laboratory companion for anyone working in DNA manipulation and analysis. \*A variety of problems encountered in the basic research laboratory. \* Example calculations are worked through from start to finish in easy-to-follow Discusses chloroplast gene expression systems, steps \* Key chapters devoted to calculations encountered when working with bacteria, phage, PCR, radioisotopes, recombinant DNA, centrifugation, oligonucleotides, protein, and forensic science. \*Written for students and laboratory technicians but a useful reference for the more experienced researcher. \*A valuable teaching resource.

The Potential Impact of Molecular Biology and Genetic Engineering in Agriculture, 1982-2000 Academic Press

In this third edition of his popular undergraduatelevel textbook, Des Nicholl recognises that a sound thoroughly updated, the book also retains its focus on the fundamental principles used in gene manipulation. The text is divided into three sections: Part I provides an introduction to the relevant basic molecular biology; Part II, the methods used to manipulate genes; and Part III, applications of the

technology. There is a new chapter devoted to the emerging importance of bioinformatics as a distinct discipline. Other additional features include text discussed, and chapter summaries, which include aims and learning outcomes. These, along with key word listings, concept maps and a glossary, will laboratory. Mathematics, as a vital component of the enable students to tailor their study to suit their own learning styles and ultimately gain a firm grasp of a subject that students traditionally find difficult. Molecular Biology and Genetic Engineering of Yeasts CRC Press

> Applied Molecular Biotechnology: The Next Generation of Genetic Engineering explains state-of-the-art advances in the rapidly developing area of molecular biotechnology, the technology of the new millennium. Comprised of chapters authored by leading experts in their respective fields, this authoritative reference text: Highlights the latest omicsbased tools and approaches used in modern biotechnology Explains how various molecular biology technologies can be used to develop transgenic plants and how those plants can meet growing food and plant-derived product demands mitochondrial omics, plant functional genomics, and wholegenome resequencing for crop improvement Explores plant - microbe and plant - insect interactions affecting plant protection and productivity Covers animal models, pharmacogenomics, human tissue banking, and the molecular diagnosis of diseases such as cervical cancer, obesity, and diabetes Examines the molecular aspects of viral diseases, production of industrial commodities using viral biotechnology, and biotechnological uses of magnetic nanoparticles Describes the use of biotechnology in the food, chemical, pharmaceutical, environmental conservation, and renewable energy sectors Applied Molecular Biotechnology: The Next Generation of Genetic Engineering serves as a springboard for new discoveries in molecular biology and its applications. Thus, this book is an invaluable resource for students and researchers of molecular biotechnology. Fundamentals Of Molecular Biology Genetic Engineering **Biotechnology Cambridge University Press** Illustrates the Complex Biochemical Relations that Permit Life to Exist It can be argued that the dawn of the 21st century has emerged as the age focused on molecular biology, which includes all the regulatory mechanisms that make cellular biochemical reaction pathways stable and life possible. For biomedical engineers, this concept is essential

to their chosen profession. Introduction to Molecular Biology, Genomics, and Proteomics for Biomedical Engineers hones in on the specialized organic molecules in living organisms and how they interact and react. The book 's sound approach to this intricately complex field makes it an exceptional resource for further exploration into the biochemistry, molecular biology, and genomics fields. It is also beneficial for electrical, chemical, and civil engineers as well as biophysicists with an interest in modeling living systems. This seminal reference includes many helpful tools for self study, including- 143 illustrations, 32 in color, to bolster understanding of complex biochemical relations 20 tables for quick access to precise data 100 key equations Challenging self-study problems within each chapter Conveys Human Progress in the Manipulation of Genomes at the Molecular Level In response to growing global interest in biotechnology, this valuable text sheds light on the evolutionary theories and future trends in genetic medicine and stem cell research. It provides a broader knowledge base on life-permitting complexities, illustrates how to model them quantitatively, and demonstrates how to manipulate them in genomic-based medicine and genetic engineering. Consequently, this book allows for a greater appreciation among of the incredible complexity of the biochemical systems required to sustain life in its many forms. A solutions manual is available for instructors wishing to convert this reference to classroom use.

May, 17 2024